Spatiotemporal Relation Networks for Video Action Recognition
نویسندگان
چکیده
منابع مشابه
Spatiotemporal Residual Networks for Video Action Recognition
Two-stream Convolutional Networks (ConvNets) have shown strong performance for human action recognition in videos. Recently, Residual Networks (ResNets) have arisen as a new technique to train extremely deep architectures. In this paper, we introduce spatiotemporal ResNets as a combination of these two approaches. Our novel architecture generalizes ResNets for the spatiotemporal domain by intro...
متن کاملSpatiotemporal Networks for Video Emotion Recognition
Our article presents an audio-visual based multi-modal emotion classification system. Considering the fact of deep learning approaches to facial analysis have recently demonstrated high performance, in our work, we use convolutional neural networks (CNNs) for emotion recognition in video, relying on temporal averaging and pooling operations reminiscent of widely used approaches for the spatial ...
متن کاملCompressed Video Action Recognition
Training robust deep video representations has proven to be much more challenging than learning deep image representations and consequently hampered tasks like video action recognition. This is in part due to the enormous size of raw video streams, the associated amount of computation required, and the high temporal redundancy. The ‘true’ and interesting signal is often drowned in too much irre...
متن کاملAction recognition in video
Automatic action recognition in video has a broad array of applications, from surveillance to interactive video games. Classic algorithms usually use handcrafted descriptors such as SIFT (see [5]) or HOG (see [3]) to compute feature vectors of videos, and have achieved promising results in the past (see [7]). More recently, Quoc Le and Will Zou at the Stanford AI lab have proved that ISA featur...
متن کاملHuman Action Recognition Using Spatiotemporal Features
Introduction In this thesis, a broad study on human action recognition is done and some techniques to improve state of the art results are developed. The thesis is covered by these chapters: related works, proposed methods, evaluation and experimental results, conclusion and future works.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2894025